miércoles, 8 de febrero de 2012

La fibra óptica

La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.



Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

Historia

El uso de la luz para la codificación de señales no es nuevo, los antiguos griegos usaban espejos para transmitir información, de modo rudimentario, usando luz solar. En 1792, Claude Chappe diseñó un sistema de telegrafía óptica, que mediante el uso de un código y torres y espejos distribuidos a lo largo de los 200 km que separan Lille y París, conseguía transmitir un mensaje en tan sólo 16 minutos.

La gran novedad aportada en nuestra época es la de haber conseguido “domar” la luz, de modo que sea posible que se propague dentro de un cable tendido por el hombre. El uso de la luz guiada, de modo que no expanda en todas direcciones, sino en una muy concreta y predefinida se ha conseguido mediante la fibra óptica, que podemos pensar como un conducto de vidrio -fibra de vidrio ultra delgada- protegida por un material aislante que sirve para transportar la señal lumínica de un punto a otro.

Además tiene muchas otras ventajas, como bajas pérdidas de señal, tamaño y peso reducido, inmunidad frente a emisiones electromagnéticas y de radiofrecuencia y seguridad.

Como resultado de estudios en física enfocados de la óptica, se descubrió un nuevo modo de empleo para la luz llamado rayo láser. Este último es usado con mayor vigor en el área de las telecomunicaciones, debido a lo factible que es enviar mensajes con altas velocidades y con una amplia cobertura. Sin embargo, no existía un conducto para hacer viajar los fotones originados por el láser.

La posibilidad de controlar un rayo de luz, dirigiéndolo en una trayectoria recta, se conoce desde hace mucho tiempo. En 1820, Augustin-Jean Fresnel ya conocía las ecuaciones por las que rige la captura de la luz dentro de una placa de cristal lisa. Su ampliación a lo que entonces se conocía como cables de vidrio fue obra de D. Hondros y Peter Debye en 1910.

El confinamiento de la luz por refracción, el principio de que posibilita la fibra óptica, fue demostrado por Daniel Colladon y Jacques Babinet en París en los comienzos de la década de 1840. El físico irlandés John Tyndall descubrió que la luz podía viajar dentro de un material (agua), curvándose por reflexión interna, y en 1870 presentó sus estudios ante los miembros de la Real Sociedad. A partir de este principio se llevaron a cabo una serie de estudios, en los que demostraron el potencial del cristal como medio eficaz de transmisión a larga distancia. Además, se desarrollaron una serie de aplicaciones basadas en dicho principio para iluminar corrientes de agua en fuentes públicas. Más tarde, J. L. Baird registró patentes que describían la utilización de bastones sólidos de vidrio en la transmisión de luz, para su empleo en un primitivo sistema de televisión de colores. El gran problema, sin embargo, era que las técnicas y los materiales usados no permitían la transmisión de la luz con buen rendimiento. Las pérdidas eran grandes y no había dispositivos de acoplamiento óptico.

Solamente en 1950 las fibras ópticas comenzaron a interesar a los investigadores, con muchas aplicaciones prácticas que estaban siendo desarrolladas. En 1952, el físico Narinder Singh Kapany, apoyándose en los estudios de John Tyndall, realizó experimentos que condujeron a la invención de la fibra óptica.

Uno de los primeros usos de la fibra óptica fue emplear un haz de fibras para la transmisión de imágenes, que se usó en el endoscopio médico. Usando la fibra óptica, se consiguió un endoscopio semiflexible, el cual fue patentado por la Universidad de Míchigan en 1956. En este invento se usaron unas nuevas fibras forradas con un material de bajo índice de refracción, ya que antes se impregnaban con aceites o ceras. En esta misma época, se empezaron a utilizar filamentos delgados como el pelo que transportaban luz a distancias cortas, tanto en la industria como en la medicina, de forma que la luz podía llegar a lugares que de otra forma serían inaccesibles. El único problema era que esta luz perdía hasta el 99% de su intensidad al atravesar distancias de hasta 9 metros de fibra.
Charles K. Kao, en su tesis doctoral de 1956, estimó que las máximas pérdidas que debería tener la fibra óptica, para que resultara práctica en enlaces de comunicaciones, eran de 20 dB/km.

En 1966, en un comunicado dirigido a la Asociación Británica para el Avance de la Ciencia, los investigadores Charles K. Kao y G. A. Hockham, de los laboratorios de Standard Telecommunications, en Inglaterra, afirmaron que se podía disponer de fibras de una transparencia mayor y propusieron el uso de fibras de vidrio y luz, en lugar de electricidad y conductores metálicos, en la transmisión de mensajes telefónicos. La obtención de tales fibras exigió grandes esfuerzos de los investigadores, ya que las fibras hasta entonces presentaban pérdidas del orden de 100 dB por kilómetro, además de una banda pasante estrecha y una enorme fragilidad mecánica. Este estudio constituyó la base para mejorar las pérdidas de las señales ópticas que hasta el momento eran muy significativas y no permitían el aprovechamiento de esta tecnología. En un artículo teórico, demostraron que las grandes pérdidas características de las fibras existentes se debían a impurezas diminutas intrínsecas del cristal. Mientras tanto, como resultado de los esfuerzos, se hicieron nuevas fibras con atenuación de 20 dB por kilómetro y una banda pasante de 1 GHz para un largo de 1 km, con la perspectiva de sustituir los cables coaxiales. La utilización de fibras de 100 µm de diámetro, envueltas en nylon resistente, permitirían la construcción de hilos tan fuertes que no podían romperse con las manos. Hoy ya existen fibras ópticas con atenuaciones tan pequeñas de hasta 1 dB por kilómetro, lo que es muchísimo menor a las pérdidas de un cable coaxial.

El artículo de Kao-Hockman estimuló a algunos investigadores a producir dichas fibras con bajas pérdidas. El gran avance se produjo en 1970, cuando los investigadores Maurer, Keck, Schultz y Zimar que trabajaban para Corning Glass, fabricaron la primera fibra óptica aplicando impurezas de titanio en sílice, con cientos de metros de largo con la claridad cristalina que Kao y Hockman habían propuesto. Las pérdidas eran de 17 dB/km. Durante esta década las técnicas de fabricación se mejoraron, consiguiendo pérdidas de tan solo 0,5 dB/km.

Poco después, Panish y Hayashi, de los laboratorios Bell, mostraron un láser de semiconductores que podía funcionar continuamente a temperatura ambiente. En 1978 ya se transmitía a 10 Gb km/segundos. Además, John MacChesney y sus colaboradores, también de los laboratorios Bell, desarrollaron independientemente métodos de preparación de fibras. Todas estas actividades marcaron un punto decisivo ya que ahora, existían los medios para llevar las comunicaciones de fibra óptica fuera de los laboratorios, al campo de la ingeniería habitual. Durante la siguiente década, a medida que continuaban las investigaciones, las fibras ópticas mejoraron constantemente su transparencia.

El 22 de abril de 1977, General Telephone and Electronics envió la primera transmisión telefónica a través de fibra óptica, en 6 Mbit/s, en Long Beach, California.

El amplificador que marcó un antes y un después en el uso de la fibra óptica en conexiones interurbanas, reduciendo el coste de ellas, fue el amplificador óptico inventado por David N. Payne, de la Universidad de Southampton, y por Emmanuel Desurvire en los Laboratorios Bell. A ambos se les concedió la Medalla Benjamin Franklin en 1988.

En 1980, las mejores fibras eran tan transparentes que una señal podía atravesar 240 kilómetros de fibra antes de debilitarse hasta ser indetectable. Pero las fibras ópticas con este grado de transparencia no se podían fabricar usando métodos tradicionales. El gran avance se produjo cuando se dieron cuenta de que el cristal de sílice puro, sin ninguna impureza de metal que absorbiese luz, solamente se podía fabricar directamente a partir de componentes de vapor, evitando de esta forma la contaminación que inevitablemente resultaba del uso convencional de los crisoles de fundición. El progreso se centraba ahora en seleccionar el equilibrio correcto de componentes del vapor y optimizar sus reacciones. La tecnología en desarrollo se basaba principalmente en el conocimiento de la termodinámica química, una ciencia perfeccionada por tres generaciones de químicos desde su adopción original por parte de Willard Gibbs, en el siglo XIX.

También en 1980, AT&T presentó a la Comisión Federal de Comunicaciones de los Estados Unidos un proyecto de un sistema de 978 kilómetros que conectaría las principales ciudades del corredor que iba de Boston a Washington D. C.. Cuatro años después, cuando el sistema comenzó a funcionar, su cable, de menos de 25 centímetros de diámetro, proporcionaba 80.000 canales de voz para conversaciones telefónicas simultáneas. Para entonces, la longitud total de los cables de fibra únicamente en los Estados Unidos alcanzaba 400.000 kilómetros (suficiente para llegar a la luna).

Pronto, cables similares atravesaron los océanos del mundo. El primer enlace transoceánico con fibra óptica fue el TAT-8 que comenzó a operar en 1988, usando un cristal tan transparente que los amplificadores para regenerar las señales débiles se podían colocar a distancias de más de 64 kilómetros. Tres años después, otro cable transatlántico duplicó la capacidad del primero. Los cables que cruzan el Pacífico también han entrado en funcionamiento. Desde entonces, se ha empleado fibra óptica en multitud de enlaces transoceánicos o entre ciudades, y paulatinamente se va extendiendo su uso desde las redes troncales de las operadoras hacia los usuarios finales.

Hoy en día, debido a sus mínimas pérdidas de señal y a sus óptimas propiedades de ancho de banda, la fibra óptica puede ser usada a distancias más largas que el cable de cobre. Además, las fibras por su peso y tamaño reducido, hace que sea muy útil en entornos donde el cable de cobre sería impracticable.

Aplicaciones

Su uso es muy variado: desde comunicaciones digitales, pasando por sensores y llegando a usos decorativos, como árboles de Navidad, veladores y otros elementos similares. Aplicaciones de la fibra monomodo: Cables submarinos, cables interurbanos, etc.

Comunicaciones con fibra óptica

La fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen.

El FTP

La fibra óptica posee una variante llamada FTP (No confundir con el protocolo FTP)

El FTP , o Par trenzado de fibra óptica en español, es la combinación de la fiabilidad del par trenzado y la velocidad de la fibra óptica, se emplea solo en instalaciones científico-militares gracias a la velocidad de transmisión 10gb/s, no está disponible para el mercado civil actualmente, su costo es 3 veces mayor al de la fibra óptica.

Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia. Debido a que las fibras monomodo son más sensibles a los empalmes, soldaduras y conectores, las fibras y los componentes de éstas son de mayor costo que los de las fibras multimodo.

Sensores de fibra óptica

Las fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor eléctrico.

Las fibras ópticas se utilizan como hidrófonos para los sismos o aplicaciones de sónar. Se ha desarrollado sistemas hidrofónicos con más de 100 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabajaba con un láser y las fibras ópticas.

Los sensores de fibra óptica para la temperatura y la presión se han desarrollado para pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores.

Otro uso de la fibra óptica como un sensor es el giroscopio óptico que usa el Boeing 767 y el uso en microsensores del hidrógeno.

Iluminación

Otro uso que le podemos dar a la fibra óptica es el de iluminar cualquier espacio. Debido a las ventajas que este tipo de iluminación representa en los últimos años ha empezado a ser muy utilizado.

Entre las ventajas de la iluminación por fibra podemos mencionar:

  • Ausencia de electricidad y calor: Esto se debe a que la fibra sólo tiene la capacidad de transmitir los haces de luz además de que la lámpara que ilumina la fibra no está en contacto directo con la misma.
  • Se puede cambiar de color la iluminación sin necesidad de cambiar la lámpara: Esto se debe a que la fibra puede transportar el haz de luz de cualquier color sin importar el color de la fibra.
  • Con una lámpara se puede hacer una iluminación más amplia por medio de fibra: Esto es debido a que con una lámpara se puede iluminar varias fibras y colocarlas en diferentes lugares.
Más usos de la fibra óptica
  • Se puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión.
  • La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros.
  • Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas.
  • Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad.
  • Líneas de abonado
  • Las fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio.
  • También es utilizada para trucar el sistema sensorial de los taxis provocando que el taxímetro (algunos le llaman cuentafichas) no marque el costo real del viaje.
  • Se emplea como componente en la confección del hormigón translúcido, invención creada por el arquitecto húngaro Ron Losonczi, que consiste en una mezcla de hormigón y fibra óptica formando un nuevo material que ofrece la resistencia del hormigón pero adicionalmente, presenta la particularidad de dejar traspasar la luz de par en par.
Características

La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas.

Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total.

En el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias.

A lo largo de toda la creación y desarrollo de la fibra óptica, algunas de sus características han ido cambiando para mejorarla. Las características más destacables de la fibra óptica en la actualidad son:
  • Cobertura más resistente: La cubierta contiene un 25% más material que las cubiertas convencionales.
  • Uso dual (interior y exterior): La resistencia al agua y emisiones ultravioleta, la cubierta resistente y el funcionamiento ambiental extendido de la fibra óptica contribuyen a una mayor confiabilidad durante el tiempo de vida de la fibra.
  • Mayor protección en lugares húmedos: Se combate la intrusión de la humedad en el interior de la fibra con múltiples capas de protección alrededor de ésta, lo que proporciona a la fibra, una mayor vida útil y confiabilidad en lugares húmedos.
  • Empaquetado de alta densidad: Con el máximo número de fibras en el menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales.
Funcionamiento

Los principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell.

Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite.

Ventajas
  • Una banda de paso muy ancha, lo que permite flujos muy elevados (del orden del Ghz).
  • Pequeño tamaño, por tanto ocupa poco espacio.
  • Gran flexibilidad, el radio de curvatura puede ser inferior a 1 cm, lo que facilita la instalación enormemente.
  • Gran ligereza, el peso es del orden de algunos gramos por kilómetro, lo que resulta unas nueve veces menos que el de un cable convencional.
  • Inmunidad total a las perturbaciones de origen electromagnético, lo que implica una calidad de transmisión muy buena, ya que la señal es inmune a las tormentas, chisporroteo...
  • Gran seguridad: la intrusión en una fibra óptica es fácilmente detectable por el debilitamiento de la energía luminosa en recepción, además, no radia nada, lo que es particularmente interesante para aplicaciones que requieren alto nivel de confidencialidad.
  • No produce interferencias.
  • Insensibilidad a los parásitos, lo que es una propiedad principalmente utilizada en los medios industriales fuertemente perturbados (por ejemplo, en los túneles del metro). Esta propiedad también permite la coexistencia por los mismos conductos de cables ópticos no metálicos con los cables de energía eléctrica.
  • Atenuación muy pequeña independiente de la frecuencia, lo que permite salvar distancias importantes sin elementos activos intermedios. Puede proporcionar comunicaciones hasta los 70 km. antes de que sea necesario regenerar la señal, además, puede extenderse a 150 km. utilizando amplificadores láser.
  • Gran resistencia mecánica (resistencia a la tracción, lo que facilita la instalación).
  • Resistencia al calor, frío, corrosión.
  • Facilidad para localizar los cortes gracias a un proceso basado en la telemetría, lo que permite detectar rápidamente el lugar y posterior reparación de la avería, simplificando la labor de mantenimiento.
  • Con un coste menor respecto al cobre.
Desventajas

A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes:
  • La alta fragilidad de las fibras.
  • Necesidad de usar transmisores y receptores más caros.
  • Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable.
  • No puede transmitir electricidad para alimentar repetidores intermedios.
  • La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica.
  • La fibra óptica convencional no puede transmitir potencias elevadas.
  • No existen memorias ópticas.
La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados.

Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica.

Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.

Cables de fibra óptica

Un cable de fibra óptica está compuesto por un grupo de fibras ópticas por el cual se transmiten señales luminosas. Las fibras ópticas comparten su espacio con hiladuras de aramida que le confieren la necesaria resistencia a la tracción.

Los cables de fibra óptica proporcionan una alternativa sobre los coaxiales en la industria de la electrónica y las telecomunicaciones. Así, un cable con 8 fibras ópticas tiene un tamaño bastante más pequeño que los utilizados habitualmente, puede soportar las mismas comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos, todo ello con una distancia entre repetidores mucho mayor.

Por otro lado, el peso del cable de fibra óptica es muchísimo menor que el de los coaxiales, ya que una bobina del cable de 8 fibras antes citado puede pesar del orden de 30 kg/km, lo que permite efectuar tendidos de 2 a 4 km de una sola vez, mientras que en el caso de los cables de cobre no son prácticas distancias superiores a 250 - 300 m.

La “fibra óptica” no se suele emplear tal y como se obtiene tras su proceso de creación (tan sólo con el revestimiento primario), sino que hay que dotarla de más elementos de refuerzo que permitan su instalación sin poner en riesgo al vidrio que la conforma. Es un proceso difícil de llevar a cabo, ya que el vidrio es quebradizo y poco dúctil. Además, la sección de la fibra es muy pequeña, por lo que la resistencia que ofrece a romperse es prácticamente nula. Es por tanto necesario protegerla mediante la estructura que denominamos cable.

Las funciones del cable

Las funciones del cable de fibra óptica son varias. Actúa como elemento de protección de la(s) fibra(s) óptica(s) que hay en su interior frente a daños y fracturas que puedan producirse tanto en el momento de su instalación como a lo largo de la vida útil de ésta. Además, proporciona suficiente consistencia mecánica para que pueda manejarse en las mismas condiciones de tracción, compresión, torsión y medioambientales que los cables de conductores. Para ello incorporan elementos de refuerzo y aislamiento frente al exterior.

Instalación y explotación

Referente a la instalación y explotación del cable, nos encontramos frente a la cuestión esencial de qué tensión es la máxima que debe admitirse durante el tendido para que el cable no se rompa y se garantice una vida media de unos 20 años.

Técnicas de empalme: Los tipos de empalmes pueden ser:
  • Empalme mecánico con el cual se pueden provocar pérdidas del orden de 0.5 dB.
  • Empalme con pegamentos con el cual se pueden provocar pérdidas del orden de 0.2 dB.
  • Empalme por fusión de arco eléctrico con el cual se logran pérdidas del orden de 0.02 dB.
Elementos y diseño del cable de fibra óptica

La estructura de un cable de fibra óptica dependerá en gran medida de la función que deba desempeñar esa fibra. A pesar de esto, todos los cables tienen unos elementos comunes que deben ser considerados y que comprenden: el revestimiento secundario de la fibra o fibras que contiene; los elementos estructurales y de refuerzo; la funda exterior del cable, y las protecciones contra el agua. Existen tres tipos de “revestimiento secundario”:
  • “Revestimiento ceñido”: Consiste en un material (generalmente plástico duro como el nylon o el poliéster) que forma una corona anular maciza situada en contacto directo con el revestimiento primario. Esto genera un diámetro externo final que oscila entre 0’5 y 1 mm. Esto proporciona a la fibra una protección contra microcurvaturas, con la salvedad del momento de su montaje, que hay que vigilar que no las produzca ella misma.
  • “Revestimiento holgado hueco”: Proporciona una cavidad sobredimensionada. Se emplea un tubo hueco extruido (construido pasando un metal candente por el plástico) de material duro, pero flexible, con un diámetro variable de 1 a 2 mm. El tubo aísla a la fibra de vibraciones y variaciones mecánicas y de temperatura externas.
  • “Revestimiento holgado con relleno”: El revestimiento holgado anterior se puede rellenar de un compuesto resistente a la humedad, con el objetivo de impedir el paso del agua a la fibra. Además ha de ser suave, dermatológicamente inocuo, fácil de extraer, autorregenerativo y estable para un rango de temperaturas que oscila entre los ¬ 55 y los 85 °C Es frecuente el empleo de derivados del petróleo y compuestos de silicona para este cometido.
Elementos estructurales

Los elementos estructurales del cable tienen como misión proporcionar el núcleo alrededor del cual se sustentan las fibras, ya sean trenzadas alrededor de él o dispersándose de forma paralela a él en ranuras practicadas sobre el elemento a tal efecto.

Elementos de refuerzo

Tienen por misión soportar la tracción a la que éste se ve sometido para que ninguna de sus fibras sufra una elongación superior a la permitida. También debe evitar posibles torsiones. Han de ser materiales flexibles y, ya que se emplearán kilómetros de ellos han de tener un coste asequible. Se suelen utilizar materiales como el acero, Kevlar y la fibra de vidrio.

Funda

Por último, todo cable posee una funda, generalmente de plástico cuyo objetivo es proteger el núcleo que contiene el medio de transmisión frente a fenómenos externos a éste como son la temperatura, la humedad, el fuego, los golpes externos, etc. Dependiendo de para qué sea destinada la fibra, la composición de la funda variará. Por ejemplo, si va a ser instalada en canalizaciones de planta exterior, debido al peso y a la tracción bastará con un revestimiento de polietileno extruido. Si el cable va a ser aéreo, donde sólo importa la tracción en el momento de la instalación nos preocupará más que la funda ofrezca resistencia a las heladas y al viento. Si va a ser enterrado, querremos una funda que, aunque sea más pesada, soporte golpes y aplastamientos externos. En el caso de las fibras submarinas la funda será una compleja superposición de varias capas con diversas funciones aislantes.

Vía: Wikipedia

No hay comentarios:

Publicar un comentario